Diurnal Characteristics in Summer Water Vapor Budget and Transport over the Tibetan Plateau
Using the ERA5 reanalysis dataset during the period 1979–2019, the diurnal variation in summer water vapor budget (Bt) over the Tibetan Plateau (TP) is investigated in this study. It is found that the TP Bt shows a distinct diurnal cycle. It tends to increase in the morning, reaches a peak in the af...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2023-02, Vol.14 (2), p.322 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the ERA5 reanalysis dataset during the period 1979–2019, the diurnal variation in summer water vapor budget (Bt) over the Tibetan Plateau (TP) is investigated in this study. It is found that the TP Bt shows a distinct diurnal cycle. It tends to increase in the morning, reaches a peak in the afternoon, and falls to a minimum in the early morning. The diurnal variations in four boundary water vapor budgets of the TP contribute to the growth in the TP Bt from the early morning to the afternoon, of which the western and eastern boundaries are more important. To understand the reasons for the diurnal variations in boundary water vapor budgets, the temporal evolutions of water vapor transports and relevant circulations at the four boundaries are examined. The results show that the temporal evolutions of water vapor transports and budgets at the four boundaries are essentially regulated by the changes in the orographic thermodynamic effect. Specifically, rapid and strong warming (cooling) on the TP slopes generates anomalous water vapor inputs (outputs) by anomalous upslope (downslope) flows during the daytime (nighttime). At the southern and western boundaries, apart from the terrain effects, the diurnal variation in the Indian southerly monsoon also has an effect on the changes in water vapor budgets by modulating the water vapor input towards the TP below 700 hPa. At the northern and eastern boundaries, under the orographic thermodynamic effects, low-level water vapor transports towards the TP accompanying by plateau-scale vertical circulations, exist significant diurnal variations and thereby adjust the boundary water vapor budgets. In this study, it is also found that the deviated water vapor flux vectors over the TP present a daily clockwise rotation, which mainly results from the diurnal variation in wind below 450 hPa. In addition, the largest amount of precipitation over the TP occurs 2–3 h after the Bt peak. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos14020322 |