Synthesis, Photophysics and Tunable Reverse Saturable Absorption of Bis-Tridentate Iridium(III) Complexes via Modification on Diimine Ligand

Five novel bis-tridentate Ir(III) complexes (Ir-1−Ir-5) incorporating versatile N^N^C ligands and a N^C^N ligand (1,3-di(2-pyridyl)-4,6-dimethylbenzene) were synthesized. With the combination of experimental and theoretical methods, their steady and transient state characteristics were researched sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-01, Vol.28 (2), p.566
Hauptverfasser: Li, Guochang, Jiang, Zhao, Tang, Meng, Jiang, Xiaoli, Tu, Houfu, Zhu, Senqiang, Liu, Rui, Zhu, Hongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Five novel bis-tridentate Ir(III) complexes (Ir-1−Ir-5) incorporating versatile N^N^C ligands and a N^C^N ligand (1,3-di(2-pyridyl)-4,6-dimethylbenzene) were synthesized. With the combination of experimental and theoretical methods, their steady and transient state characteristics were researched scientifically. The UV-visible absorption spectra show that the broadband charge transfer absorbance of those bis-tridentate Ir(III) complexes can reach 550 nm, all of these complexes reveal the long-lasting phosphorescent emission. Because the excited-state absorption is more powerful than the ground-state absorption, a sturdy reverse saturable absorption (RSA) process can ensue in the visible and near-infrared regions when the complexes are exposed to a 532 nm laser. Therefore, the optical power limiting (OPL) effect follows the trend: Ir-5 > Ir-4 ≈ Ir-3 > Ir-2 > Ir-1. Generally speaking, the expansion of π-conjugation and the introduction of electron donating/withdrawing groups on the N^N^C ligand could effectively elevate the OPL effect. Therefore, these octahedral bis-tridentate Ir(III) complexes might be exploited as potential OPL materials.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28020566