Near-zero-index ultra-fast pulse characterization

Transparent conducting oxides exhibit giant optical nonlinearities in the near-infrared window where their linear index approaches zero. Despite the magnitude and speed of these nonlinearities, a “killer” optical application for these compounds has yet to be found. Because of the absorptive nature o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-06, Vol.13 (1), p.3536-3536, Article 3536
Hauptverfasser: Jaffray, Wallace, Belli, Federico, Carnemolla, Enrico G., Dobas, Catalina, Mackenzie, Mark, Travers, John, Kar, Ajoy K., Clerici, Matteo, DeVault, Clayton, Shalaev, Vladimir M., Boltasseva, Alexandra, Ferrera, Marcello
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transparent conducting oxides exhibit giant optical nonlinearities in the near-infrared window where their linear index approaches zero. Despite the magnitude and speed of these nonlinearities, a “killer” optical application for these compounds has yet to be found. Because of the absorptive nature of the typically used intraband transitions, out-of-plane configurations with short optical paths should be considered. In this direction, we propose an alternative frequency-resolved optical gating scheme for the characterization of ultra-fast optical pulses that exploits near-zero-index aluminium zinc oxide thin films. Besides the technological advantages in terms of manufacturability and cost, our system outperforms commercial modules in key metrics, such as operational bandwidth, sensitivity, and robustness. The performance enhancement comes with the additional benefit of simultaneous self-phase-matched second and third harmonic generation. Because of the fundamental importance of novel methodologies to characterise ultra-fast events, our solution could be of fundamental use for numerous research labs and industries. Frequency resolved optical gating is the core method for characterising ultra-fast optical pulses. Here, the authors use zero-index nonlinearities to largely enhance key performances and enable simultaneous second and third harmonic measurements.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-31151-4