Flexural Behavior of Precast UHPC Segmental Beams with Unbonded Tendons and Epoxy Resin Joints

Precast concrete segmental bridges (PCSBs) with hybrid tendons may be the most competitive solution for achieving the advantages of rapid construction and favorable structural performance. Therefore, the flexural behavior of precast concrete segmental bridges (PCSBs) with unbonded tendons and epoxy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2023-07, Vol.13 (7), p.1643
Hauptverfasser: Zheng, Hui, Chen, Daixing, Ou, Mingfu, Liang, Xuejiao, Luo, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Precast concrete segmental bridges (PCSBs) with hybrid tendons may be the most competitive solution for achieving the advantages of rapid construction and favorable structural performance. Therefore, the flexural behavior of precast concrete segmental bridges (PCSBs) with unbonded tendons and epoxy joints was experimentally investigated in this study, and the effects of the joint types were recorded. Investigations were carried out on the ultimate loads, prestressed strand stresses, deflections, as well as failure modes, while an unbonded monolithic beam was tested for comparison. In addition, the strain measurement proved that the average strains agree with the assumption of plane section, regardless of whether the joints were set. The flexural strengths of prefabricated components were 9~15% lower than those of the monolithic beams with unbonded tendons. Meanwhile, the shape of the joints also influenced the flexural bearing capacity; the bearing capacity of the dual-tooth joint beam was 4.5% lower than that of the single-tooth one, and the bearing capacity of the flat butt joint member was 5.7% lower than that of the dual-tooth joint beam. Moreover, the experimental deflection curve and ultimate bearing capacity of the models with different shear keys showed a good correlation with the FE results. These research outcomes will aid in comprehending the roles of joints in the flexural behaviors of precast UHPC segmental bridges.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings13071643