The Sierpinski Object in the Scott Realizability Topos
We study the Sierpinski object $\Sigma$ in the realizability topos based on Scott's graph model of the $\lambda$-calculus. Our starting observation is that the object of realizers in this topos is the exponential $\Sigma ^N$, where $N$ is the natural numbers object. We define order-discrete obj...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2020-01, Vol.16, Issue 3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Sierpinski object $\Sigma$ in the realizability topos based on Scott's graph model of the $\lambda$-calculus. Our starting observation is that the object of realizers in this topos is the exponential $\Sigma ^N$, where $N$ is the natural numbers object. We define order-discrete objects by orthogonality to $\Sigma$. We show that the order-discrete objects form a reflective subcategory of the topos, and that many fundamental objects in higher-type arithmetic are order-discrete. Building on work by Lietz, we give some new results regarding the internal logic of the topos. Then we consider $\Sigma$ as a dominance; we explicitly construct the lift functor and characterize $\Sigma$-subobjects. Contrary to our expectations the dominance $\Sigma$ is not closed under unions. In the last section we build a model for homotopy theory, where the order-discrete objects are exactly those objects which only have constant paths. |
---|---|
ISSN: | 1860-5974 |
DOI: | 10.23638/LMCS-16(3:12)2020 |