A Multi-Dimensional Goal Aircraft Guidance Approach Based on Reinforcement Learning with a Reward Shaping Algorithm
Guiding an aircraft to 4D waypoints at a certain heading is a multi-dimensional goal aircraft guidance problem. [d=Zu]In order to improve the performance and solve this problem, this paper proposes a multi-layer RL approach.To enhance the performance, in the present study, a multi-layer RL approach...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-08, Vol.21 (16), p.5643 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Guiding an aircraft to 4D waypoints at a certain heading is a multi-dimensional goal aircraft guidance problem. [d=Zu]In order to improve the performance and solve this problem, this paper proposes a multi-layer RL approach.To enhance the performance, in the present study, a multi-layer RL approach to solve the multi-dimensional goal aircraft guidance problem is proposed. The approach [d=Zu]enablesassists the autopilot in an ATC simulator to guide an aircraft to 4D waypoints at certain latitude, longitude, altitude, heading, and arrival time, respectively. To be specific, a multi-layer RL [d=Zu]approach is proposedmethod to simplify the neural network structure and reduce the state dimensions. A shaped reward function that involves the potential function and Dubins path method is applied. [d=Zu]Experimental and simulation results show that the proposed approachExperiments are conducted and the simulation results reveal that the proposed method can significantly improve the convergence efficiency and trajectory performance. [d=Zu]FurthermoreFurther, the results indicate possible application prospects in team aircraft guidance tasks, since the aircraft can directly approach a goal without waiting in a specific pattern, thereby overcoming the problem of current ATC simulators. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21165643 |