Fixed point results of an implicit iterative scheme for fractal generations
In this paper, we derive the escape criteria for general complex polynomial $ f(x) = \sum_{i = 0}^{p}a_{i}x^{i} $ with $ p\geq2 $, where $ a_{i} \in \mathbb{C} $ for $ i = 0, 1, 2, \dots, p $ to generate the fractals. Moreover, we study the orbit of an implicit iteration (i.e., Jungck-Ishikawa itera...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2021-01, Vol.6 (12), p.13170-13186 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we derive the escape criteria for general complex polynomial $ f(x) = \sum_{i = 0}^{p}a_{i}x^{i} $ with $ p\geq2 $, where $ a_{i} \in \mathbb{C} $ for $ i = 0, 1, 2, \dots, p $ to generate the fractals. Moreover, we study the orbit of an implicit iteration (i.e., Jungck-Ishikawa iteration with $ s $-convexity) and develop algorithms for Mandelbrot set and Multi-corn or Multi-edge set. Moreover, we draw some complex graphs and observe how the graph of Mandelbrot set and Multi-corn or Multi-edge set vary with the variation of $ a_{i} $'s. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2021761 |