Fixed point results of an implicit iterative scheme for fractal generations

In this paper, we derive the escape criteria for general complex polynomial $ f(x) = \sum_{i = 0}^{p}a_{i}x^{i} $ with $ p\geq2 $, where $ a_{i} \in \mathbb{C} $ for $ i = 0, 1, 2, \dots, p $ to generate the fractals. Moreover, we study the orbit of an implicit iteration (i.e., Jungck-Ishikawa itera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2021-01, Vol.6 (12), p.13170-13186
Hauptverfasser: Zhang, Haixia, Tanveer, Muhammad, Li, Yi-Xia, Peng, Qingxiu, Shah, Nehad Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we derive the escape criteria for general complex polynomial $ f(x) = \sum_{i = 0}^{p}a_{i}x^{i} $ with $ p\geq2 $, where $ a_{i} \in \mathbb{C} $ for $ i = 0, 1, 2, \dots, p $ to generate the fractals. Moreover, we study the orbit of an implicit iteration (i.e., Jungck-Ishikawa iteration with $ s $-convexity) and develop algorithms for Mandelbrot set and Multi-corn or Multi-edge set. Moreover, we draw some complex graphs and observe how the graph of Mandelbrot set and Multi-corn or Multi-edge set vary with the variation of $ a_{i} $'s.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021761