Noise diagnostics of graphene interconnects for atomic-scale electronics

Graphene nanogaps are considered as essential building blocks of two-dimensional electronic circuits, as they offer the possibility to interconnect a broad range of atomic-scale objects. Here we provide an insight into the microscopic processes taking place during the formation of graphene nanogaps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ 2D materials and applications 2021-05, Vol.5 (1), p.1-9, Article 57
Hauptverfasser: Pósa, László, Balogh, Zoltán, Krisztián, Dávid, Balázs, Péter, Sánta, Botond, Furrer, Roman, Csontos, Miklós, Halbritter, András
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene nanogaps are considered as essential building blocks of two-dimensional electronic circuits, as they offer the possibility to interconnect a broad range of atomic-scale objects. Here we provide an insight into the microscopic processes taking place during the formation of graphene nanogaps through the detailed analysis of their low-frequency noise properties. Following the evolution of the noise level, we identify the fundamentally different regimes throughout the nanogap formation. By modeling the resistance and bias dependence of the noise, we resolve the major noise-generating processes: atomic-scale junction-width fluctuations in the nanojunction regime and sub-atomic gap-size fluctuations in the nanogap regime. As a milestone toward graphene-based atomic electronics, our results facilitate the automation of an optimized electrical breakdown protocol for high-yield graphene nanogap fabrication.
ISSN:2397-7132
2397-7132
DOI:10.1038/s41699-021-00237-w