Ostrowski type inequalities via the Katugampola fractional integrals
The main aim of this study is to reveal new generalized-Ostrowski-type inequalities using Katugampola fractional integral operator which generalizes Riemann- Liouville and Hadamard fractional integral operators into a single form. For this purpose, at first, a new fractional integral identity is gen...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2020, Vol.5 (1), p.42-53 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main aim of this study is to reveal new generalized-Ostrowski-type inequalities using Katugampola fractional integral operator which generalizes Riemann- Liouville and Hadamard fractional integral operators into a single form. For this purpose, at first, a new fractional integral identity is generated by the researchers. Then, by using this identity, some inequalities for the class of functions whose certain powers of absolute values of derivatives are p-convex are derived. Some applications to special means for positive real numbers are also given. It is observed that the obtained inequalities are generalizations of some well known results. Keywords: Katugampola fractional integral; Ostrowski type inequalities; p-convex functions |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2020004 |