Fabrication of Self-Healable Magnetic Nanocomposites via Diels−Alder Click Chemistry

In this study, we report a novel approach to fabricate an organic/inorganic magnetic hybrid system capable of self-healing, wherein a polycaprolactone-poly(furfuryl glycidyl ether) copolymer (PCLF) serving as the structure template was first synthesized, followed by the incorporation of iron oxide n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-02, Vol.9 (3), p.506
Hauptverfasser: Lee, Yi-Huan, Zhuang, Yan-Nian, Wang, Hsin-Ta, Wei, Ming-Feng, Ko, Wen-Chi, Chang, Wei-Jen, Way, Tun-Fun, Rwei, Syang-Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we report a novel approach to fabricate an organic/inorganic magnetic hybrid system capable of self-healing, wherein a polycaprolactone-poly(furfuryl glycidyl ether) copolymer (PCLF) serving as the structure template was first synthesized, followed by the incorporation of iron oxide nanoparticles-decorated multiwalled carbon nanotubes (IONPs-MWCNTs) and 1,1′-(methylenedi-4,1-phenylene)bismaleimide (BMI) into the polymer matrix to form a covalently crosslinked hybrid network via a Diels−Alder (DA) reaction. For this system, the reactive combination of diene and dienophile from furan/maleimide, MWCNT/furan, and MWCNT/maleimide could facilely induce multiple DA reactions that imparted a versatile route to efficiently introduce IONPs-MWCNTs into the organic polymer hosts, resulting in a uniform distribution of IONPs-MWCNTs that led to a hybrid system with superparamagnetic properties. Beside the magnetic behavior, such material synergistically exhibited a superior ability for healing scratch defects via a retro-DA reaction. Therefore, this crosslinked PCLF/BMI/IONPs-MWCNTs hybrid system which exhibits multifunctional properties including superparamagnetic behavior and self-repairability can serve as an intelligent material for developing advanced electromagnetic applications.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9030506