Melatonin Prevents Oxidative Stress-Induced Mitochondrial Dysfunction and Apoptosis in High Glucose-Treated Schwann Cells via Upregulation of Bcl2, NF-κB, mTOR, Wnt Signalling Pathways
Neuropathy is a complication that affects more than 50% of long-standing diabetic patients. One of the causes of diabetes neuropathy (DN) is the apoptosis of Schwann cells due to prolonged exposure to high glucose and build-up of oxidative stress. Melatonin is a hormone that has a known antioxidant...
Gespeichert in:
Veröffentlicht in: | Antioxidants 2019-06, Vol.8 (7), p.198 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuropathy is a complication that affects more than 50% of long-standing diabetic patients. One of the causes of diabetes neuropathy (DN) is the apoptosis of Schwann cells due to prolonged exposure to high glucose and build-up of oxidative stress. Melatonin is a hormone that has a known antioxidant property. In this study, we investigated the protective effect of melatonin on high glucose-induced Schwann cells' apoptosis. Our results revealed that high glucose promoted apoptosis via mitochondrial-related oxidative stress and downregulated Bcl-2 family proteins in Schwann cells. In this signalling pathway, Bcl-2, Bcl-XL and Mcl-1 proteins were down-regulated while p-BAD and Puma proteins were up-regulated by high glucose treatment. Besides, we also proved that high glucose promoted apoptosis in Schwann cells through decreasing the p-NF-κB in the NF-κB signalling pathway. Key regulators of mTOR signalling pathway such as p-mTOR, Rictor and Raptor were also down-regulated after high glucose treatment. Additionally, high glucose treatment also decreased the Wnt signalling pathway downstream proteins (Wnt 5a/b, p-Lrp6 and Axin). Our results showed that melatonin treatment significantly inhibited high glucose-induced ROS generation, restored mitochondrial membrane potential and inhibited high glucose-induced apoptosis in Schwann cells. Furthermore, melatonin reversed the alterations of protein expression caused by high glucose treatment. Our results concluded that melatonin alleviates high glucose-induced apoptosis in Schwann cells through mitigating mitochondrial-related oxidative stress and the alterations of Bcl-2, NF-κB, mTOR and Wnt signalling pathways. |
---|---|
ISSN: | 2076-3921 2076-3921 |
DOI: | 10.3390/antiox8070198 |