Interference Management with Dynamic Resource Allocation Method on Ultra-Dense Networks in Femto-Macrocellular Network
Ultra-Dense Network (UDN) which is formed from femtocells densely deployed is known as one of key technologies for 5th generation (5G) cellular networks. UDN promises for increased capacity and quality of cellular networks. However, UDN faces more complex interference problems than rarely deployed f...
Gespeichert in:
Veröffentlicht in: | Jurnal Rekayasa Elektrika 2021-12, Vol.17 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultra-Dense Network (UDN) which is formed from femtocells densely deployed is known as one of key technologies for 5th generation (5G) cellular networks. UDN promises for increased capacity and quality of cellular networks. However, UDN faces more complex interference problems than rarely deployed femtocells, worse on femtocells that are located on cell edge area of macrocell. Therefore, mitigating or reducing effects of interferences is an important issue in UDN. This paper focuses on interference management using dynamic resource allocation for UDN. Types of interference considered in this study are cross-tier (macrocell-to-femtocell) and co-tier (femtocellto-femtocell) interferences for uplink transmission. We consider several scenarios to examine the dynamic resource allocation method for UDN in case of femtocells deployed in the whole area of microcell and in the cell edge area of macrocell. Simulation experiment using MATLAB program has been carried out. The performance parameters that are collected from the simulation are Signal to Interference and Noise Ratio (SINR), throughput, and Bit Error Rate (BER). The obtained simulation results show that system using dynamic resource allocation method outperforms conventional system and the results were consistent for the collected performance parameters. The dynamic resource allocation promises to reduce the effects of interference in UDN. |
---|---|
ISSN: | 1412-4785 2252-620X |
DOI: | 10.17529/jre.v17i4.23157 |