Doppler LiDAR Observation of Subsidence in Synoptic Scale and Performance of a Global Numerical Weather Prediction Model in Capturing the Subsidence

The vertical velocity data from a Doppler LiDAR situated at the centre of Hong Kong were examined to look for signature of subsidence within the atmospheric boundary layer against a synoptic background. Two case studies were performed, namely, stable atmospheric conditions in foggy weather and possi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2023-11, Vol.14 (11), p.1686
Hauptverfasser: Chan, Pak-Wai, Yim, Steve Hung-Lam, Huang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The vertical velocity data from a Doppler LiDAR situated at the centre of Hong Kong were examined to look for signature of subsidence within the atmospheric boundary layer against a synoptic background. Two case studies were performed, namely, stable atmospheric conditions in foggy weather and possible “subsidence heating” at the periphery of the outer circulation of an intense tropical cyclone. The LiDAR’s Doppler velocity data were found to provide insights into the vertical motion of the air on the synoptic scale. They appear to confirm subsidence in foggy weather but provide new information about the mechanism for the occurrence of extremely hot weather. The data were also compared with vertical velocity forecasts from a numerical weather prediction model to assess the quality of the forecast. The Doppler LiDAR’s vertical velocity data were found to be useful in the verification of omega forecasts from the global numerical weather prediction model. They were found to provide further insights into the subsidence of the troposphere, particularly the atmospheric boundary layer, in certain synoptic patterns.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos14111686