Non-linear finite element investigation on the behavior of cold-formed plain lipped C-section in shear, and combined bending and shear

The paper provides numerical simulations, based on the finite element method (FEM) using the software package ANSYS/Standard, of high strength C-section cold-formed steel purlins in shear and combined bending and shear. The simulations were compared with the previous research on a variety of section...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials and engineering structures 2019-03, Vol.6 (1), p.83-91
Hauptverfasser: Tabassum Mahzabeen RAKA, Khan Mahmud AMANAT
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper provides numerical simulations, based on the finite element method (FEM) using the software package ANSYS/Standard, of high strength C-section cold-formed steel purlins in shear and combined bending and shear. The simulations were compared with the previous research on a variety of section sizes and thicknesses. The reasonable results of the numerical simulations show that finite element analysis can be used to predict the ultimate loads of thin-walled members including the post-buckling behavior of thin-walled sections in shear and combined bending and shear. It reveals that finite element analysis can therefore be used to design and optimize thin-walled sections of high strength steel. Direct Strength Method (DSM) design rules for C-sections in shear and for combined bending and shear both with and without tension field action can be investigated using this FE model.
ISSN:2170-127X