Enhanced Thermal Conductivity and Dielectric Properties of Epoxy Composites with Fluorinated Graphene Nanofillers

The demand for high-performance dielectrics has increased due to the rapid development of modern electric power and electronic technology. Composite dielectrics, which can overcome the limitations of traditional single polymers in thermal conductivity, dielectric properties and mechanical performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-08, Vol.13 (16), p.2322
Hauptverfasser: Zhang, Jiacheng, Wang, Zi, Jiang, Guoqing, Wei, Huachao, Zhang, Zongxi, Ren, Junwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The demand for high-performance dielectrics has increased due to the rapid development of modern electric power and electronic technology. Composite dielectrics, which can overcome the limitations of traditional single polymers in thermal conductivity, dielectric properties and mechanical performance, have received considerable attention. In this study, we report a multifunctional nanocomposite material fabricated by blending fluorinated graphene (F-graphene) with epoxy resin. The F-graphene/epoxy composite exhibited a high thermal conductivity of 0.3304 W·m−1·K−1 at a low filler loading of 1.0 wt.%, which was 67.63% higher than that of pure epoxy. The composite dielectric also showed high breakdown strength (78.60 kV/mm), high dielectric constant (8.23), low dielectric loss (
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13162322