Vehicle SI Engine with MPI of Liquid State LPG
The first part of the article reviews the possible methods for LPG and air mixture forming (injection of gaseous or liquid state LPG) and their influence on the operating properties of an SI engine. The next chapter explains the processes that take place when liquid state LPG is injected into the ai...
Gespeichert in:
Veröffentlicht in: | Journal of Middle European Construction and Design of Cars 2016-06, Vol.14 (1), p.41-47 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first part of the article reviews the possible methods for LPG and air mixture forming (injection of gaseous or liquid state LPG) and their influence on the operating properties of an SI engine. The next chapter explains the processes that take place when liquid state LPG is injected into the air flow of an internal combustion engine intake manifold. A simplified calculation is used to show that the injection of liquid state LPG is associated with extreme low temperature of the LPG injected into intake manifold and with ice formation on the outlet nozzle. The article sets out the design of an end part injector (EPI) for liquid state LPG that reduces the risk of icing of the outlet nozzle. The results of experimental research indicate very good operational properties for a vehicle SI engine with the combustion mixture formed by the injection of liquid state LPG into the engine intake manifold. The calculation results are confirmed by recording plots of LPG pressure inside the end part of injector (EPI) and the temperature on the outlet nozzle (ON) of the LPG injector. Visual inspection of injection of liquid state LPG into the intake manifold clearly supports the performed measurements. The conclusions summarize the knowledge gained from the laboratory investigation of liquid state LPG injection into an engine intake manifold. |
---|---|
ISSN: | 1804-9338 1804-9338 |
DOI: | 10.1515/mecdc-2016-0004 |