Multimodal dynamic and unclonable anti-counterfeiting using robust diamond microparticles on heterogeneous substrate

The growing prevalence of counterfeit products worldwide poses serious threats to economic security and human health. Developing advanced anti-counterfeiting materials with physical unclonable functions offers an attractive defense strategy. Here, we report multimodal, dynamic and unclonable anti-co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-05, Vol.14 (1), p.2507-2507, Article 2507
Hauptverfasser: Zhang, Tongtong, Wang, Lingzhi, Wang, Jing, Wang, Zhongqiang, Gupta, Madhav, Guo, Xuyun, Zhu, Ye, Yiu, Yau Chuen, Hui, Tony K. C., Zhou, Yan, Li, Can, Lei, Dangyuan, Li, Kwai Hei, Wang, Xinqiang, Wang, Qi, Shao, Lei, Chu, Zhiqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growing prevalence of counterfeit products worldwide poses serious threats to economic security and human health. Developing advanced anti-counterfeiting materials with physical unclonable functions offers an attractive defense strategy. Here, we report multimodal, dynamic and unclonable anti-counterfeiting labels based on diamond microparticles containing silicon-vacancy centers. These chaotic microparticles are heterogeneously grown on silicon substrate by chemical vapor deposition, facilitating low-cost scalable fabrication. The intrinsically unclonable functions are introduced by the randomized features of each particle. The highly stable signals of photoluminescence from silicon-vacancy centers and light scattering from diamond microparticles can enable high-capacity optical encoding. Moreover, time-dependent encoding is achieved by modulating photoluminescence signals of silicon-vacancy centers via air oxidation. Exploiting the robustness of diamond, the developed labels exhibit ultrahigh stability in extreme application scenarios, including harsh chemical environments, high temperature, mechanical abrasion, and ultraviolet irradiation. Hence, our proposed system can be practically applied immediately as anti-counterfeiting labels in diverse fields. Practical anticounterfeiting labels should possess both high-capacity and robustness, and should allow easy fabrication and readout. Here, the authors show how to heterogeneously grow robust and stable chaotic pattern of diamond microparticles - containing SiV defects - on silicon substrates.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-38178-1