Aproximación fractal para semivariogramas freáticos

Se integra sobre la medida de Hausdorff y se obtiene el exponente Hölder como la codimensión DT −D del fractal, en el espacio Euclidiano en que se encuentra inmerso. Ésto ha resultado de la aplicación de la concepción de integral de Daniell, que posibilita integrar funciones de Lipschitz y de Hölder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de matemática, teoria y aplicaciones teoria y aplicaciones, 2009-02, Vol.9 (2), p.85-100
Hauptverfasser: Mercado Escalante, Roberto, Brambila P., F, Lázaro Ch., P, Fuentes R., C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Se integra sobre la medida de Hausdorff y se obtiene el exponente Hölder como la codimensión DT −D del fractal, en el espacio Euclidiano en que se encuentra inmerso. Ésto ha resultado de la aplicación de la concepción de integral de Daniell, que posibilita integrar funciones de Lipschitz y de Hölder sobre las medidas de Baire y también, de definir el espacio de fractales con la métrica de Hutchinson.  Se obtiene la potencia para el modelo [potenciado]* de los semivariogramas de procesos estacionarios. Se aplica a los niveles de los mantos freáticos del Valle del Carrizo, Sinaloa, México, y se crean los semivariogramas experimentales y el de ajuste con un modelo potencial, encontrándose que su potencia es β = 1,5. Se obtiene también, que la dimensión fractal de estos mantos es de 2,25.
ISSN:1409-2433
2215-3373
2215-3373
DOI:10.15517/rmta.v9i2.219