Skin and soft tissue modeling and its impact on apparel modeling

Rigid body avatars do not fully define the complex interaction between human and body-worn product (humanoid-to-coveroid).  Skin and soft tissue modeling to create more realistic 3D humanoid body models are needed. We considered if humanoid split lines relevant to pattern-engineering practice can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in development and assembling of textile products 2023-05, Vol.4 (2)
Hauptverfasser: Carol McDonald, Randy K Rannow, Alfredo Ballester, Katy Schildmeyer, Emma Scott, Simeon Gill
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rigid body avatars do not fully define the complex interaction between human and body-worn product (humanoid-to-coveroid).  Skin and soft tissue modeling to create more realistic 3D humanoid body models are needed. We considered if humanoid split lines relevant to pattern-engineering practice can be related to biodynamic and fold lines of the skin. Changes in skin and tissue are expected, depending on the dermis, the effects of movement, and the effects of coveroid pressure. The physiological functions of the skin may be assigned mechanical parameters for dynamic study utilizing biodynamic excisional skin tension (BEST) lines, main folding lines (MFL) with Langer’s lines. Critical to such study is the connecting of the skin to the rig (humanoid virtual skeleton). The use of stable (skeletal feature points related to both the virtual skeleton and apparel block patterns) and morphological (skin feature points identifying areas of morphological variation and dynamic study) landmarks for connecting the skin to rig was analyzed. We utilized these landmarks to drive lines as BEST, MFL and Langer’s lines for the mapping of skin deformations. Initial findings suggest the use of stable and morphological landmarks could have profoundly positive effects throughout the entire digital product creation (DPC) production pipeline and should be further explored & are important in developing standard topology practice.
ISSN:2701-939X