Some Progress on the Double Roman Domination in Graphs
For a graph G = (V,E), a double Roman dominating function (or just DRDF) is a function f : V → {0, 1, 2, 3} having the property that if f(v) = 0 for a vertex v, then v has at least two neighbors assigned 2 under f or one neighbor assigned 3 under f, and if f(v) = 1, then vertex v must have at least...
Gespeichert in:
Veröffentlicht in: | Discussiones Mathematicae. Graph Theory 2019-01, Vol.39 (1), p.41-53 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a graph G = (V,E), a double Roman dominating function (or just DRDF) is a function f : V → {0, 1, 2, 3} having the property that if f(v) = 0 for a vertex v, then v has at least two neighbors assigned 2 under f or one neighbor assigned 3 under f, and if f(v) = 1, then vertex v must have at least one neighbor ω with f(ω) ≥ 2. The weight of a DRDF f is the sum f(V ) = Σ
f(v), and the minimum weight of a DRDF on G is the double Roman domination number of G, denoted by γdR(G). In this paper, we derive sharp upper and lower bounds on γ
(G) + γ
(Ḡ) and also γ
(G)γ
(Ḡ) ,where Ḡ is the complement of graph G. We also show that the decision problem for the double Roman domination number is NP- complete even when restricted to bipartite graphs and chordal graphs. |
---|---|
ISSN: | 1234-3099 2083-5892 |
DOI: | 10.7151/dmgt.2069 |