Deployment and Retrieval Missions from Quasi-Periodic and Chaotic States under a Non-Linear Control Law

When the length of the tether remains constant, the relative planar motion of the tethered subsatellite with respect to the base satellite in a circular orbit around the Earth, is similar to a simple pendulum motion, i.e., there are two kinds of equilibrium points: local vertical and local horizonta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2022-07, Vol.14 (7), p.1381
Hauptverfasser: Salazar, Francisco J. T., Prado, Antonio B. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When the length of the tether remains constant, the relative planar motion of the tethered subsatellite with respect to the base satellite in a circular orbit around the Earth, is similar to a simple pendulum motion, i.e., there are two kinds of equilibrium points: local vertical and local horizontal positions, which are center and saddle points, respectively. However, when out-of-plane motion is initially excited, the relative motion of the subsatellite presents symmetric quasi-periodic and chaotic behavior. In the first part of this study, such trajectories are analyzed by means of Poincaré sections. In the second part, a non-linear tension force by using a Lyapunov approach is proposed for controlling the coupled pitch-roll motion during the deployment and retrieval phases. The goal of this paper is to guide the relative non-linear motion of the subsatellite to the local upward vertical position. The numerical results show that the non-linear tension control steered the subsatellite close to the local vertical direction very well, reducing the quasi-periodic and chaotic oscillations.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym14071381