Experimental Investigation on the Grouting Performance of Foam-CNT Composite Grouts in Vertical Inclined Fractures Under Flowing Condition
Grouting is an effective method to solve the problem of water inrush in tunnel and underground engineering. However, rock fractures are often simplified as horizontal and smooth fractures in most grouting studies, while studies on vertical inclined fractures are still rare. To investigate the diffus...
Gespeichert in:
Veröffentlicht in: | Lithosphere 2024-01, Vol.2024 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Grouting is an effective method to solve the problem of water inrush in tunnel and underground engineering. However, rock fractures are often simplified as horizontal and smooth fractures in most grouting studies, while studies on vertical inclined fractures are still rare. To investigate the diffusion law in vertical inclined fractures, a vertical inclined fracture grouting simulation device was developed. A new type of cement slurry with low weight and high flowing water resistance was developed by combining carbon nanotube (CNT) slurry with foamed cement. Physical simulation experiments were conducted to investigate various factors (initial flowing water, inclination angle, sand content, and grouting rate) on the sealing efficiency of grouting. Results show that the high foam content has a negative effect on the compressive strength of the slurry, and has a positive effect on the fluidity and water resistance. The optimum ratio of slurry is 30% foam content, 1.0% CNT content, 1.3 water/cement ratio, and 3% additive content. The inclination angle and inclination direction of the fracture have a great influence on the sealing efficiency of grouting. Foam-CNT composite grouts can meet the requirement of flowing water grouting in vertical inclined fractures. |
---|---|
ISSN: | 1941-8264 1947-4253 |
DOI: | 10.2113/2024/lithosphere_2023_341 |