Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets

Accurate and comprehensive extraction of information from high-dimensional single cell datasets necessitates faithful visualizations to assess biological populations. A state-of-the-art algorithm for non-linear dimension reduction, t-SNE, requires multiple heuristics and fails to produce clear repre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-11, Vol.10 (1), p.5415-12, Article 5415
Hauptverfasser: Belkina, Anna C., Ciccolella, Christopher O., Anno, Rina, Halpert, Richard, Spidlen, Josef, Snyder-Cappione, Jennifer E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate and comprehensive extraction of information from high-dimensional single cell datasets necessitates faithful visualizations to assess biological populations. A state-of-the-art algorithm for non-linear dimension reduction, t-SNE, requires multiple heuristics and fails to produce clear representations of datasets when millions of cells are projected. We develop opt-SNE, an automated toolkit for t-SNE parameter selection that utilizes Kullback-Leibler divergence evaluation in real time to tailor the early exaggeration and overall number of gradient descent iterations in a dataset-specific manner. The precise calibration of early exaggeration together with opt-SNE adjustment of gradient descent learning rate dramatically improves computation time and enables high-quality visualization of large cytometry and transcriptomics datasets, overcoming limitations of analysis tools with hard-coded parameters that often produce poorly resolved or misleading maps of fluorescent and mass cytometry data. In summary, opt-SNE enables superior data resolution in t-SNE space and thereby more accurate data interpretation. Visualisation tools that use dimensionality reduction, such as t-SNE, provide poor visualisation on large data sets of millions of observations. Here the authors present opt-SNE, that automatically finds data set-tailored parameters for t-SNE to optimise visualisation and improve analysis.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-13055-y