Improvement of wireless transmission system performance for EEG signals based on development of scalar quantization

Advancement of wireless technology leads to some developments in current wireless electroencephalography. Through improving the transmission method of brainwaves, it would be possible to bring more convenience for the patients in need and give this opportunity to others for discovering other aspects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electrical bioimpedance 2019-07, Vol.4 (1), p.62-72
Hauptverfasser: Nezhad, Mohsen Habib, Subari, Khazaimatol S., Yahyavi, Mehran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advancement of wireless technology leads to some developments in current wireless electroencephalography. Through improving the transmission method of brainwaves, it would be possible to bring more convenience for the patients in need and give this opportunity to others for discovering other aspects of the amazing brainwave. What has been proposed in this study is a new type of adjustable backward quantization method which exploits the nature of the brainwave signal. This method is based on the nature of the captured brainwave and its quantization boundary changes based on the amplitude of each EEG captured signal. The proposed quantization scheme has been analyzed with uniform and Gaussian distribution of quantization level. Consequently, the Backward Gaussian Quantization with Adjustable Boundary and two Word Memories beside the Backward Uniform Quantization with Adjustable Boundary and two Word Memories are introduced by this experiment. In addition, the performance of wireless transmission system and the proposed quantizer’s efficiency for very low frequency (up to 100 Hz) and amplitude EEG signal have been noticed. With doing so, we simulated the transmitter and receiver by MATLAB software. To model the medium, channel was assumed as Additive White Gaussian Noise (AWGN). Meanwhile analysis is done for the whole wireless system performance in terms of transmission range, compared with current available wireless transmission systems on the market. It should be noticed that the transmission range of the proposed wireless transmission system is compared to the transmission range of current wireless EEG systems when there is no obstacle between transmitter and receiver. Furthermore, some relevant parameters to evaluate the quality of the proposed quantization method were examined. To sum up, the proposed quantization schemes show considerable performance in terms of Quantization Rate for constant MSQE and SQNR in comparison with Uniform Quantization method and the achieved transmission range of our wireless system by using this method is higher than available wireless EEG systems on market.
ISSN:1891-5469
1891-5469
DOI:10.5617/jeb.437