Subspace Projection Attention Network for GPR Heterogeneous Clutter Removal
Clutter removal in ground-penetrating radar (GPR) based on deep learning has been studied in recent years. However, existing methods are primarily designed for homogeneous background conditions and utilize only local spatial information via the convolution operation. In order to solve these issues,...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.3917-3926 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clutter removal in ground-penetrating radar (GPR) based on deep learning has been studied in recent years. However, existing methods are primarily designed for homogeneous background conditions and utilize only local spatial information via the convolution operation. In order to solve these issues, a subspace projection attention (SPA) network is proposed for GPR heterogeneous clutter removal in this article. First, a heterogeneous concrete dataset based on a numerical model with randomly placed aggregates is constructed, which incorporates the complex electromagnetic propagation process accurately to improve the effectiveness for heterogeneous clutter removal. In addition, the clutter basis learning neural network is designed by integrating the SPA module into the skip connection paths of U-Net architecture. By learning the subspace basis vectors adaptively, the SPA exploits both local and global spatial information to extract target features precisely. At the same time, the feature maps are projected to the target subspace to remove heterogeneous clutter features. Finally, the performance and effectiveness of proposed method are validated by simulations and experiments. |
---|---|
ISSN: | 1939-1404 2151-1535 |
DOI: | 10.1109/JSTARS.2024.3355213 |