Existence of periodic solutions for neutral nonlinear differential equations with variable delay
We use a variation of Krasnoselskii fixed point theorem introduced by Burton to show that the nonlinear neutral differential equation $$ x'(t)=-a(t)x^3(t)+c(t)x'(t-g(t))+G(t,x^3(t-g(t)) $$ has a periodic solution. Since this equation is nonlinear, the variation of parameters can not be app...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2010-09, Vol.2010 (127), p.1-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use a variation of Krasnoselskii fixed point theorem introduced by Burton to show that the nonlinear neutral differential equation $$ x'(t)=-a(t)x^3(t)+c(t)x'(t-g(t))+G(t,x^3(t-g(t)) $$ has a periodic solution. Since this equation is nonlinear, the variation of parameters can not be applied directly; we add and subtract a linear term to transform the differential into an equivalent integral equation suitable for applying a fixed point theorem. Our result is illustrated with an example. |
---|---|
ISSN: | 1072-6691 |