Existence of periodic solutions for neutral nonlinear differential equations with variable delay

We use a variation of Krasnoselskii fixed point theorem introduced by Burton to show that the nonlinear neutral differential equation $$ x'(t)=-a(t)x^3(t)+c(t)x'(t-g(t))+G(t,x^3(t-g(t)) $$ has a periodic solution. Since this equation is nonlinear, the variation of parameters can not be app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2010-09, Vol.2010 (127), p.1-8
Hauptverfasser: Deham Hafsia, Djoudi Ahcene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use a variation of Krasnoselskii fixed point theorem introduced by Burton to show that the nonlinear neutral differential equation $$ x'(t)=-a(t)x^3(t)+c(t)x'(t-g(t))+G(t,x^3(t-g(t)) $$ has a periodic solution. Since this equation is nonlinear, the variation of parameters can not be applied directly; we add and subtract a linear term to transform the differential into an equivalent integral equation suitable for applying a fixed point theorem. Our result is illustrated with an example.
ISSN:1072-6691