On the Kantorovich Theory for Nonsingular and Singular Equations

We develop a new Kantorovich-like convergence analysis of Newton-type methods to solve nonsingular and singular nonlinear equations in Banach spaces. The outer or generalized inverses are exchanged by a finite sum of linear operators making the implementation of these methods easier than in earlier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2024-06, Vol.13 (6), p.358
Hauptverfasser: Argyros, Ioannis K., George, Santhosh, Regmi, Samundra, Argyros, Michael I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a new Kantorovich-like convergence analysis of Newton-type methods to solve nonsingular and singular nonlinear equations in Banach spaces. The outer or generalized inverses are exchanged by a finite sum of linear operators making the implementation of these methods easier than in earlier studies. The analysis uses relaxed generalized continuity of the derivatives of operators involved required to control the derivative and on real majorizing sequences. The same approach can also be implemented on other iterative methods with inverses. The examples complement the theory by verifying the convergence conditions and demonstrating the performance of the methods.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms13060358