Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine

Extreme learning machine (ELM) is a single-layer feedforward neural network based classifier that has attracted significant attention in computer vision and pattern recognition due to its fast learning speed and strong generalization. In this paper, we propose to integrate spectral-spatial informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2014-06, Vol.6 (6), p.5795-5814
Hauptverfasser: Chen, Chen, Li, Wei, Su, Hongjun, Liu, Kui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extreme learning machine (ELM) is a single-layer feedforward neural network based classifier that has attracted significant attention in computer vision and pattern recognition due to its fast learning speed and strong generalization. In this paper, we propose to integrate spectral-spatial information for hyperspectral image classification and exploit the benefits of using spatial features for the kernel based ELM (KELM) classifier. Specifically, Gabor filtering and multihypothesis (MH) prediction preprocessing are two approaches employed for spatial feature extraction. Gabor features have currently been successfully applied for hyperspectral image analysis due to the ability to represent useful spatial information. MH prediction preprocessing makes use of the spatial piecewise-continuous nature of hyperspectral imagery to integrate spectral and spatial information. The proposed Gabor-filtering-based KELM classifier and MH-prediction-based KELM classifier have been validated on two real hyperspectral datasets. Classification results demonstrate that the proposed methods outperform the conventional pixel-wise classifiers as well as Gabor-filtering-based support vector machine (SVM) and MH-prediction-based SVM in challenging small training sample size conditions.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs6065795