Age-related loss of mitochondrial glutathione exacerbates menadione-induced inhibition of Complex I
The role of mitochondrial GSH (mGSH) in the enhanced age-related susceptibility to xenobiotic toxicity is not well defined. We determined mGSH status and indices of mitochondrial bioenergetics in hepatocytes from young and old F344 rats treated with 300 μM menadione, a concentration that causes 50%...
Gespeichert in:
Veröffentlicht in: | Redox biology 2019-04, Vol.22, p.101155, Article 101155 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The role of mitochondrial GSH (mGSH) in the enhanced age-related susceptibility to xenobiotic toxicity is not well defined. We determined mGSH status and indices of mitochondrial bioenergetics in hepatocytes from young and old F344 rats treated with 300 μM menadione, a concentration that causes 50% cell death in old. At this concentration, mGSH was significantly lost only in hepatocytes from old rats, and with near total depletion due to lower basal mGSH in aged cells. In old hepatocytes, menadione caused mitochondrial membrane potential to collapse, as well as significant deficits in maximal O
consumption and respiratory reserve capacity, indicators of cellular bioenergetic resiliency. Further examination revealed that the menadione-mediated loss of respiratory reserve capacity in aged hepatocytes was from significant inhibition of Complex I activity and increased proton leak, for which an increase in Complex II activity was not able to compensate. These data demonstrate an age-related increase in mitochondrial susceptibility to a redox-cycling challenge, particularly in regards to Complex I activity, and provide a plausible mechanism to link this vulnerability to mGSH perturbations. |
---|---|
ISSN: | 2213-2317 2213-2317 |
DOI: | 10.1016/j.redox.2019.101155 |