Cyclic Dipeptides Mediating Quorum Sensing and Their Biological Effects in Hypsizygus Marmoreus

A novel quorum sensing (QS) system was discovered in Serratia odorifera, the symbiotic bacterium of Hypsizygus marmoreus. This system uses cyclo(Pro-Phe), cyclo(Pro-Tyr), cyclo(Pro-Val), cyclo(Pro-Leu), cyclo(Tyr-Leu), and cyclo(Tyr-Ile) as autoinducers. This discovery is the first attempt to charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomolecules (Basel, Switzerland) Switzerland), 2020-02, Vol.10 (2), p.298
Hauptverfasser: Sun, Shu-Jing, Liu, Yun-Chao, Weng, Cai-Hong, Sun, Shi-Wei, Li, Fan, Li, Hui, Zhu, Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel quorum sensing (QS) system was discovered in Serratia odorifera, the symbiotic bacterium of Hypsizygus marmoreus. This system uses cyclo(Pro-Phe), cyclo(Pro-Tyr), cyclo(Pro-Val), cyclo(Pro-Leu), cyclo(Tyr-Leu), and cyclo(Tyr-Ile) as autoinducers. This discovery is the first attempt to characterize cyclic dipeptides as QS signaling molecules in S. odorifera and improves the classical QS theory. Significantly, except for cyclo(Tyr-Leu), these QS autoinducers can increase the transcription level of lignin-degrading enzyme genes of . The cyclo(Pro-Phe) can increase the activity of extracellular laccase (1.32-fold) and manganese peroxidase (20%), which may explain why QS potentially regulates the hyphal growth, primordium formation, and fruit body development of H. marmoreus. Furthermore, it was demonstrated that the cyclo(Tyr-Ile) biosynthesis in S. odorifera was catalyzed by the nonribosomal peptide synthetase (NRPS). This study supports exploring the growth and development of promoted by its symbiotic bacteria at QS signal transduction level.
ISSN:2218-273X
2218-273X
DOI:10.3390/biom10020298