Influence of exogenous melatonin on the oxidative status and the state of peroxidation of proteins in a rat model of alimentary obesity

Not only lipids, but also proteins are exposed to the action of reactive oxygen species (ROS). Oxidative modification of proteins (PBS) leads to a change in their native conformation with the formation of large aggregates, it causes inactivation of enzymes, disrupts the metabolism and functioning of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ozhirenie i metabolizm 2019-03, Vol.15 (4), p.15-21
Hauptverfasser: Davydov, Victor V., Medvedev, Dmitry V., Shodiev, Dmitry R., Nekrasova, Marina S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Not only lipids, but also proteins are exposed to the action of reactive oxygen species (ROS). Oxidative modification of proteins (PBS) leads to a change in their native conformation with the formation of large aggregates, it causes inactivation of enzymes, disrupts the metabolism and functioning of cells. In addition, there is a growing interest in studying the hormone of the pineal gland called melatonin, as well as its synthetic analogues as the leading protection factors in the oxidative stress conditioned by disturbed physiological rhythms, including obesity. The peculiarities of protein peroxidation in the case of alimentary obesity, as well as the conditions affecting to this process, in contrast to lipid peroxidation (LPO), have not been studied sufficiently, that has determined the purpose of this study. Aim. To evaluate the effect of exogenous melatonin on the oxidative status and features of PBS in rats with alimentary obesity. Methods. The study was conducted on 27 white Wistar male rats with body weight 160180 grams. Animals were divided into 3 series of 9 rats in each: 1 series intact animals; 2 series animals with alimentary obesity, followed by the introduction of 0,9% sodium chloride solution in a volume of 2 ml for 12 days; 3 series animals with alimentary obesity followed by melatonin administration at a dose of 2 mg / kg rats for 12 days. Alimentary obesity was reproduced by feeding animals with high-calorie carbohydrate-fatty food, consisting of a laboratory feed "Assortment Agro" (42.5%), butter (25%) and sweet condensed milk (32.5%) for seven weeks. The maximum physical working capacity and resistance of rats to severe hypobaric hypoxia were determined. PBS was determined by the method of R. Levine in the modification of E.E. Dubinina. In addition, the lipid peroxidation marker TBA-reactive products (malonic dialdehyde MDA) was determined. Results. It has been established that the PBS in alimentary obesity is not specific, it is reflected in the increase in the areas of absorption of light from both the visible and ultraviolet of aldehyde and ketondinitrophenylhydrazones. In parallel with this, there was a marked increase in the concentration of TBA-reactive products in the blood serum in this pathology, as well as a significant decrease in the resistance of rats to hypobaric hypoxic hypoxia and maximum physical activity. The daily administration of a 2 mg/kg melatonin suspension to rats with alimentary obesity for 12 days leads to a
ISSN:2071-8713
2306-5524
DOI:10.14341/omet9561