Dual-Driven Learning-Based Multiple-Input Multiple-Output Signal Detection for Unmanned Aerial Vehicle Air-to-Ground Communications
Unmanned aerial vehicle (UAV) air-to-ground (AG) communication plays a critical role in the evolving space–air–ground integrated network of the upcoming sixth-generation cellular network (6G). The integration of massive multiple-input multiple-output (MIMO) systems has become essential for ensuring...
Gespeichert in:
Veröffentlicht in: | Drones (Basel) 2024-05, Vol.8 (5), p.180 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unmanned aerial vehicle (UAV) air-to-ground (AG) communication plays a critical role in the evolving space–air–ground integrated network of the upcoming sixth-generation cellular network (6G). The integration of massive multiple-input multiple-output (MIMO) systems has become essential for ensuring optimal performing communication technologies. This article presents a novel dual-driven learning-based network for millimeter-wave (mm-wave) massive MIMO symbol detection of UAV AG communications. Our main contribution is that the proposed approach combines a data-driven symbol-correction network with a model-driven orthogonal approximate message passing network (OAMP-Net). Through joint training, the dual-driven network reduces symbol detection errors propagated through each iteration of the model-driven OAMP-Net. The numerical results demonstrate the superiority of the dual-driven detector over the conventional minimum mean square error (MMSE), orthogonal approximate message passing (OAMP), and OAMP-Net detectors at various noise powers and channel estimation errors. The dual-driven MIMO detector exhibits a 2–3 dB lower signal-to-noise ratio (SNR) requirement compared to the MMSE and OAMP-Net detectors to achieve a bit error rate (BER) of 1×10−2 when the channel estimation error is −30 dB. Moreover, the dual-driven MIMO detector exhibits an increased tolerance to channel estimation errors by 2–3 dB to achieve a BER of 1×10−3. |
---|---|
ISSN: | 2504-446X 2504-446X |
DOI: | 10.3390/drones8050180 |