A CNN based m5c RNA methylation predictor

Post-transcriptional modifications of RNA play a key role in performing a variety of biological processes, such as stability and immune tolerance, RNA splicing, protein translation and RNA degradation. One of these RNA modifications is m5c which participates in various cellular functions like RNA st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-12, Vol.13 (1), p.21885-21885, Article 21885
Hauptverfasser: Aslam, Irum, Shah, Sajid, Jabeen, Saima, ELAffendi, Mohammed, A. Abdel Latif, Asmaa, Ul Haq, Nuhman, Ali, Gauhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Post-transcriptional modifications of RNA play a key role in performing a variety of biological processes, such as stability and immune tolerance, RNA splicing, protein translation and RNA degradation. One of these RNA modifications is m5c which participates in various cellular functions like RNA structural stability and translation efficiency, got popularity among biologists. By applying biological experiments to detect RNA m5c methylation sites would require much more efforts, time and money. Most of the researchers are using pre-processed RNA sequences of 41 nucleotides where the methylated cytosine is in the center. Therefore, it is possible that some of the information around these motif may have lost. The conventional methods are unable to process the RNA sequence directly due to high dimensionality and thus need optimized techniques for better features extraction. To handle the above challenges the goal of this study is to employ an end-to-end, 1D CNN based model to classify and interpret m5c methylated data sites. Moreover, our aim is to analyze the sequence in its full length where the methylated cytosine may not be in the center. The evaluation of the proposed architecture showed a promising results by outperforming state-of-the-art techniques in terms of sensitivity and accuracy. Our model achieve 96.70% sensitivity and 96.21% accuracy for 41 nucleotides sequences while 96.10% accuracy for full length sequences.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-48751-9