Evaluation of surface roughness of the bracket slot floor—a 3D perspective study

Background An important constituent of an orthodontic appliance is orthodontic brackets. It is either the bracket or the archwire that slides through the bracket slot, during sliding mechanics. Overcoming the friction between the two surfaces demands an important consideration in an appliance design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in orthodontics 2016, Vol.17 (1), p.3-3, Article 3
Hauptverfasser: Agarwal, Chetankumar O., Vakil, Ketan K., Mahamuni, Avinash, Tekale, Pawankumar Dnyandeo, Gayake, Prasad V., Vakil, Jeegar K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background An important constituent of an orthodontic appliance is orthodontic brackets. It is either the bracket or the archwire that slides through the bracket slot, during sliding mechanics. Overcoming the friction between the two surfaces demands an important consideration in an appliance design. The present study investigated the surface roughness of four different commercially available stainless steel brackets. Methods All tests were carried out to analyse quantitatively the morphological surface of the bracket slot floor with the help of scanning electron microscope (SEM) machine and to qualitatively analyse the average surface roughness (Sa) of the bracket slot floor with the help of a three-dimensional (3D) non-contact optical surface profilometer machine. Results The SEM microphotographs were evaluated with the help of visual analogue scale, the surface roughness for group A = 0—very rough surface, group C = 1—rough surface, group B = 2—smooth surface, and group D = 3—very smooth surface. Surface roughness evaluation with the 3D non-contact optical surface profilometer machine was highest for group A, followed by group C, group B and group D. Groups B and D provided smooth surface roughness; however, group D had the very smooth surface with values 0.74 and 0.75 for mesial and distal slots, respectively. Conclusions Evaluation of surface roughness of the bracket slot floor with both SEM and profilometer machine led to the conclusion that the average surface roughness was highest for group A, followed by group C, group B and group D.
ISSN:2196-1042
1723-7785
2196-1042
DOI:10.1186/s40510-016-0116-2