A localized view on molecular dissociation via electron-ion partial covariance

Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications chemistry 2022-03, Vol.5 (1), p.42-10, Article 42
Hauptverfasser: Allum, Felix, Music, Valerija, Inhester, Ludger, Boll, Rebecca, Erk, Benjamin, Schmidt, Philipp, Baumann, Thomas M., Brenner, Günter, Burt, Michael, Demekhin, Philipp V., Dörner, Simon, Ehresmann, Arno, Galler, Andreas, Grychtol, Patrik, Heathcote, David, Kargin, Denis, Larsson, Mats, Lee, Jason W. L., Li, Zheng, Manschwetus, Bastian, Marder, Lutz, Mason, Robert, Meyer, Michael, Otto, Huda, Passow, Christopher, Pietschnig, Rudolf, Ramm, Daniel, Schubert, Kaja, Schwob, Lucas, Thomas, Richard D., Vallance, Claire, Vidanović, Igor, von Korff Schmising, Clemens, Wagner, René, Walter, Peter, Zhaunerchyk, Vitali, Rolles, Daniel, Bari, Sadia, Brouard, Mark, Ilchen, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d 3/2 and 4d 5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site. Coincidence experiments at free-electron lasers enable time resolved site-specific investigations of molecular photochemistry at high signal rates, but isolating individual dissociation processes still poses a considerable technical challenge. Here, the authors use electron-ion partial covariance imaging to isolate otherwise elusive chemical shifts in UV-induced photofragmentation pathways of the prototypical chiral molecule 1-iodo-2-methylbutane.
ISSN:2399-3669
2399-3669
DOI:10.1038/s42004-022-00656-w