Deep-Learning-Based Cryptanalysis of Lightweight Block Ciphers Revisited
With the development of artificial intelligence, deep-learning-based cryptanalysis has been actively studied. There are many cryptanalysis techniques. Among them, cryptanalysis was performed to recover the secret key used for cryptography encryption using known plaintext. In this paper, we propose a...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2023-06, Vol.25 (7), p.986 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the development of artificial intelligence, deep-learning-based cryptanalysis has been actively studied. There are many cryptanalysis techniques. Among them, cryptanalysis was performed to recover the secret key used for cryptography encryption using known plaintext. In this paper, we propose a cryptanalysis method based on state-of-art deep learning technologies (e.g., residual connections and gated linear units) for lightweight block ciphers (e.g., S-DES, S-AES, and S-SPECK). The number of parameters required for training is significantly reduced by 93.16%, and the average of bit accuracy probability increased by about 5.3% compared with previous the-state-of-art work. In addition, cryptanalysis for S-AES and S-SPECK was possible with up to 12-bit and 6-bit keys, respectively. Through this experiment, we confirmed that the-state-of-art deep-learning-based key recovery techniques for modern cryptography algorithms with the full round and the full key are practically infeasible. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e25070986 |