Strong Convergence Theorems for Quasi-Bregman Nonexpansive Mappings in Reflexive Banach Spaces
We study a strong convergence for a common fixed point of a finite family of quasi-Bregman nonexpansive mappings in the framework of real reflexive Banach spaces. As a consequence, convergence for a common fixed point of a finite family of Bergman relatively nonexpansive mappings is discussed. Furth...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Mathematics 2014-01, Vol.2014 (2014), p.369-377-540 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a strong convergence for a common fixed point of a finite family of quasi-Bregman nonexpansive mappings in the framework of real reflexive Banach spaces. As a consequence, convergence for a common fixed point of a finite family of Bergman relatively nonexpansive mappings is discussed. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common solution of a finite family equilibrium problem and a common zero of a finite family of maximal monotone mappings. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2014/580686 |