Strong Convergence Theorems for Quasi-Bregman Nonexpansive Mappings in Reflexive Banach Spaces

We study a strong convergence for a common fixed point of a finite family of quasi-Bregman nonexpansive mappings in the framework of real reflexive Banach spaces. As a consequence, convergence for a common fixed point of a finite family of Bergman relatively nonexpansive mappings is discussed. Furth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Mathematics 2014-01, Vol.2014 (2014), p.369-377-540
Hauptverfasser: Alghamdi, Mohammad Ali, Shahzad, Naseer, Zegeye, Habtu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a strong convergence for a common fixed point of a finite family of quasi-Bregman nonexpansive mappings in the framework of real reflexive Banach spaces. As a consequence, convergence for a common fixed point of a finite family of Bergman relatively nonexpansive mappings is discussed. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common solution of a finite family equilibrium problem and a common zero of a finite family of maximal monotone mappings. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.
ISSN:1110-757X
1687-0042
DOI:10.1155/2014/580686