Evaluation of Salmon, Tuna, and Beef Freshness Using a Portable Spectrometer

There has been strong demand for the development of an accurate but simple method to assess the freshness of food. In this study, we demonstrated a system to determine food freshness by analyzing the spectral response from a portable visible/near-infrared (VIS/NIR) spectrometer using the Convolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-08, Vol.20 (15), p.4299
Hauptverfasser: Moon, Eui Jung, Kim, Youngsik, Xu, Yu, Na, Yeul, Giaccia, Amato J, Lee, Jae Hyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There has been strong demand for the development of an accurate but simple method to assess the freshness of food. In this study, we demonstrated a system to determine food freshness by analyzing the spectral response from a portable visible/near-infrared (VIS/NIR) spectrometer using the Convolutional Neural Network (CNN)-based machine learning algorithm. Spectral response data from salmon, tuna, and beef incubated at 25 °C were obtained every minute for 30 h and then categorized into three states of "fresh", "likely spoiled", and "spoiled" based on time and pH. Using the obtained spectral data, a CNN-based machine learning algorithm was built to evaluate the freshness of experimental objects. In addition, a CNN-based machine learning algorithm with a shift-invariant feature can minimize the effect of the variation caused using multiple devices in a real environment. The accuracy of the obtained machine learning model based on the spectral data in predicting the freshness was approximately 85% for salmon, 88% for tuna, and 92% for beef. Therefore, our study demonstrates the practicality of a portable spectrometer in food freshness assessment.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20154299