MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies

MEMS inductors are used in a wide range of applications in micro- and nanotechnology, including RF MEMS, sensors, power electronics, and Bio-MEMS. Fabrication technologies set the boundary conditions for inductor design and their electrical and mechanical performance. This review provides a comprehe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microsystems & nanoengineering 2021-08, Vol.7 (1), p.59-59, Article 59
Hauptverfasser: Le, Hoa Thanh, Haque, Rubaiyet I., Ouyang, Ziwei, Lee, Seung Woo, Fried, Shelley I., Zhao, Ding, Qiu, Min, Han, Anpan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MEMS inductors are used in a wide range of applications in micro- and nanotechnology, including RF MEMS, sensors, power electronics, and Bio-MEMS. Fabrication technologies set the boundary conditions for inductor design and their electrical and mechanical performance. This review provides a comprehensive overview of state-of-the-art MEMS technologies for inductor fabrication, presents recent advances in 3D additive fabrication technologies, and discusses the challenges and opportunities of MEMS inductors for two emerging applications, namely, integrated power electronics and neurotechnologies. Among the four top-down MEMS fabrication approaches, 3D surface micromachining and through-substrate-via (TSV) fabrication technology have been intensively studied to fabricate 3D inductors such as solenoid and toroid in-substrate TSV inductors. While 3D inductors are preferred for their high-quality factor, high power density, and low parasitic capacitance, in-substrate TSV inductors offer an additional unique advantage for 3D system integration and efficient thermal dissipation. These features make in-substrate TSV inductors promising to achieve the ultimate goal of monolithically integrated power converters. From another perspective, 3D bottom-up additive techniques such as ice lithography have great potential for fabricating inductors with geometries and specifications that are very challenging to achieve with established MEMS technologies. Finally, we discuss inspiring and emerging research opportunities for MEMS inductors.
ISSN:2055-7434
2096-1030
2055-7434
DOI:10.1038/s41378-021-00275-w