About the role of hydrafed calcium carboaluminates in improving the technology of complex processing of nephelines

The scientific justification and development of the method for industrial synthesis of complex aluminates of alkaline earth metals is an innovative solution that determined several directions in the development of technology for complex processing of nepheline raw materials. It ensures the productio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zapiski Gornogo instituta (1999) 2018-01, Vol.231, p.292-292
Hauptverfasser: V. M. Sizyakov, V. N. Brichkin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The scientific justification and development of the method for industrial synthesis of complex aluminates of alkaline earth metals is an innovative solution that determined several directions in the development of technology for complex processing of nepheline raw materials. It ensures the production of high-quality metallurgical alumina, the effective utilization of nepheline sludge and production of new types of multipurpose by-products. The modern development of these technical solutions is associated with ensuring the energy efficiency of the synthesis of hydrafed calcium carboaluminates (HCCA) and increasing the level of purification of aluminate solutions. The conditions for synthesizing HCCA with the use of calcareous materials of natural and technogenic origin have been experimentally determined, which makes it possible to isolate the average particle diameter as one of the determining factors of this process. The effect of the turnover of the hydrogarnet sludge on the removal of kinetic limitations in the process of deep desalination of aluminous solutions is theoretically justified. The conditions of a two-stage dosage of HCCA are experimentally determined. It is shown that the optimum ratio of the amount of the reagent supplied in the first and second stages is about 3: 2. At the same time, the maximum degree of precipitation of silica provides the production of aluminate solutions with a silicon module at the level of 95,000, which is achieved by using a HCCA synthesized based on chemically precipitated calcium carbonate in the processing of wastes from the production of mineral fertilizers.
ISSN:2411-3336
2541-9404
DOI:10.25515/pmi.2018.3.292