Regulation of cholesterol distribution in macrophage-derived foam cells by interferon-gamma
The Th1-derived cytokine gamma interferon, IFN-gamma, is present within the microenvironment of an atheromatous lesion and likely contributes to lesion progression through macrophage activation. While the inflammatory effects of IFN-gamma are well known, the role of this cytokine in cholesterol meta...
Gespeichert in:
Veröffentlicht in: | Journal of lipid research 2000-01, Vol.41 (1), p.75-83 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Th1-derived cytokine gamma interferon, IFN-gamma, is present within the microenvironment of an atheromatous lesion and likely contributes to lesion progression through macrophage activation. While the inflammatory effects of IFN-gamma are well known, the role of this cytokine in cholesterol metabolism in macrophage derived foam cells is unclear. In the present study, the incubation of foam cells with IFN-gamma resulted in the reduction of HDL(3)-mediated cholesterol efflux. The decrease in cholesterol efflux was not observed with other macrophage-activating factors as colony-stimulating factors failed to demonstrate a similar effect. The reduction in cholesterol efflux was independent of apoE synthesis or SR-BI expression and was associated with a redistribution of intracellular cholesterol with an increase in cholesteryl ester accumulation. The increase in the esterified pool, primarily in cholesterol eicosapentadenoate, docosapentaenoate, arachidonate, and linoleate was associated with a 2-fold increase in acyl-CoA:cholesterol-O-acyltransferase, ACAT, activity and message without any change in neutral cholesteryl ester hydrolase activity. While CD36 message was reduced in IFN-gamma-treated foam cells, the ability to reverse the decrease in efflux by the ACAT inhibitor A58035 in a dose-dependent manner suggests that the IFN-gamma effect on efflux is primarily through the modulation of ACAT expression. Therefore, in addition to its inflammatory effects, IFN-gamma can contribute to the progression of an atherosclerotic lesion by altering the pathway of intracellular cholesterol trafficking in macrophage derived foam cells. |
---|---|
ISSN: | 0022-2275 |
DOI: | 10.1016/S0022-2275(20)32076-9 |