Indium selenide: an insight into electronic band structure and surface excitations

We have investigated the electronic response of single crystals of indium selenide by means of angle-resolved photoemission spectroscopy, electron energy loss spectroscopy and density functional theory. The loss spectrum of indium selenide shows the direct free exciton at ~1.3 eV and several other p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-06, Vol.7 (1), p.3445-11, Article 3445
Hauptverfasser: Politano, A., Campi, D., Cattelan, M., Ben Amara, I., Jaziri, S., Mazzotti, A., Barinov, A., Gürbulak, B., Duman, S., Agnoli, S., Caputi, L. S., Granozzi, G., Cupolillo, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated the electronic response of single crystals of indium selenide by means of angle-resolved photoemission spectroscopy, electron energy loss spectroscopy and density functional theory. The loss spectrum of indium selenide shows the direct free exciton at ~1.3 eV and several other peaks, which do not exhibit dispersion with the momentum. The joint analysis of the experimental band structure and the density of states indicates that spectral features in the loss function are strictly related to single-particle transitions. These excitations cannot be considered as fully coherent plasmons and they are damped even in the optical limit, i.e. for small momenta. The comparison of the calculated symmetry-projected density of states with electron energy loss spectra enables the assignment of the spectral features to transitions between specific electronic states. Furthermore, the effects of ambient gases on the band structure and on the loss function have been probed.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-03186-x