In-Plane Shear Behavior of Unreinforced Masonry Wall Strengthened with Bamboo Fiber Textile-Reinforced Geopolymer Mortar

Old structures that are made of adobe or brick walls are usually unreinforced and not designed for lateral forces. In-plane loads applied to unreinforced masonry walls (URM) are the usual cause of damage and failure of old buildings. In this research, small unreinforced brick masonry wallettes, 350...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2023-02, Vol.13 (2), p.538
Hauptverfasser: Libre Jr, Roneh Glenn D., Leaño Jr, Julius L., Lopez, Luis Felipe, Cacanando, Carlo Joseph D., Promentilla, Michael Angelo B., Guades, Ernesto J., Garciano, Lessandro Estelito O., Ongpeng, Jason Maximino C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Old structures that are made of adobe or brick walls are usually unreinforced and not designed for lateral forces. In-plane loads applied to unreinforced masonry walls (URM) are the usual cause of damage and failure of old buildings. In this research, small unreinforced brick masonry wallettes, 350 mm × 350 mm and 50 mm in thickness, are strengthened using bamboo fiber textile and plastered to the face of the walls using short bamboo fiber-reinforced geopolymer mortar. The wallettes are subjected to diagonal shear tests as described by ASTM E519 to investigate the in-plane shear performance of the strengthening method. The performances of 5 wallettes strengthened on one-side with mortar only, 5 wallettes on both-sides with mortar only, 5 wallettes with textile plastered on one-side only, and another 5 wallettes with textile plastered on both-sides, are compared to 5 control specimens without any strengthening. It is observed that the wallettes strengthened on one side and both sides with textile yield an increase in shear of about 24% and 35% in average, respectively. Failure modes show that the usual failure for URM is running bond failure and for strengthened URM is columnar failure. The implications of the results can be used in developing textile-reinforced geopolymer mortar systems to strengthen URM walls.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings13020538