Interspecies Outer Membrane Vesicles (OMVs) Modulate the Sensitivity of Pathogenic Bacteria and Pathogenic Yeasts to Cationic Peptides and Serum Complement

The virulence of bacterial outer membrane vesicles (OMVs) contributes to innate microbial defense. Limited data report their role in interspecies reactions. There are no data about the relevance of OMVs in bacterial-yeast communication. We hypothesized that model OMVs may orchestrate the susceptibil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-11, Vol.20 (22), p.5577
Hauptverfasser: Roszkowiak, Justyna, Jajor, Paweł, Guła, Grzegorz, Gubernator, Jerzy, Żak, Andrzej, Drulis-Kawa, Zuzanna, Augustyniak, Daria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The virulence of bacterial outer membrane vesicles (OMVs) contributes to innate microbial defense. Limited data report their role in interspecies reactions. There are no data about the relevance of OMVs in bacterial-yeast communication. We hypothesized that model OMVs may orchestrate the susceptibility of pathogenic bacteria and yeasts to cationic peptides (polymyxin B) and serum complement. Using growth kinetic curve and time-kill assay we found that OMVs protect against polymyxin B-dependent fungicidal action in combination with fluconazole. We showed that OMVs preserve the virulent filamentous phenotype of yeasts in the presence of both antifungal drugs. We demonstrated that bacteria including , and coincubated with OMVs are protected against membrane targeting agents. The high susceptibility of OMV-associated bacteria to polymyxin B excluded the direct way of protection, suggesting rather the fusion mechanisms. High-performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV) and zeta-potential measurement revealed a high sequestration capacity (up to 95%) of OMVs against model cationic peptide accompanied by an increase in surface electrical charge. We presented the first experimental evidence that bacterial OMVs by sequestering of cationic peptides may protect pathogenic yeast against combined action of antifungal drugs. Our findings identify OMVs as important inter-kingdom players.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20225577