E-Cigarette Vapour Alters High-Fat Diet-Induced Systemic Inflammatory Responses but Has No Effect on High-Fat Diet-Induced Changes in Gut Microbiota

The gut microbiome, which can be altered by different diets or smoking, has been implicated in the pathogenesis of lung conditions. E-cigarette vaping is now recognised to have detrimental health effects, with several of these being similar to cigarette smoking. However, whether e-cigarettes can alt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2023-04, Vol.15 (7), p.1783
Hauptverfasser: Chen, Hui, Burke, Catherine, Donovan, Chantal, Faiz, Alen, Saad, Sonia, Oliver, Brian G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The gut microbiome, which can be altered by different diets or smoking, has been implicated in the pathogenesis of lung conditions. E-cigarette vaping is now recognised to have detrimental health effects, with several of these being similar to cigarette smoking. However, whether e-cigarettes can alter high-fat diet (HFD)-induced systemic effects and gut microbiota is unknown. In this study, we investigated the effects of HFD in the absence/presence of e-cigarette exposure on systemic inflammation, lipid metabolic markers, and the gut microbiome. Mice were fed a HFD (or chow) in the absence/presence of e-vapour exposure (±nicotine) and serum inflammation, lipid levels, and microbial diversity were assessed. HFD increased the circulating levels of both triglycerides and non-esterified fatty acids, which were significantly reduced by e-vapour exposure in HFD-fed mice. Serum TNF-α was increased by HFD consumption or e-vapour. HFD had a significant effect on microbial diversity, but there were no additional effects of e-vapour exposure. This study highlights both similarities and differences in how the body responds to e-cigarette vapours, and it is therefore likely that the long-term sequelae of e-cigarette vapour exposure/vaping might not involve the significant alteration of the gut microbiome.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu15071783