Thermal Infrared Imagery Integrated with Terrestrial Laser Scanning and Particle Tracking Velocimetry for Characterization of Landslide Model Failure

A laboratory model test is an effective method for studying landslide risk mitigation. In this study, thermal infrared (TIR) imagery, a modern no-contact technique, was introduced and integrated with terrestrial laser scanning (TLS) and particle tracking velocimetry (PTV) to characterize the failure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2019-12, Vol.20 (1), p.219
Hauptverfasser: Ma, Junwei, Niu, Xiaoxu, Liu, Xiao, Wang, Yankun, Wen, Tao, Zhang, Junrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A laboratory model test is an effective method for studying landslide risk mitigation. In this study, thermal infrared (TIR) imagery, a modern no-contact technique, was introduced and integrated with terrestrial laser scanning (TLS) and particle tracking velocimetry (PTV) to characterize the failure of a landslide model. The characteristics of the failure initiation, motion, and region of interest, including landslide volume, deformation, velocity, surface temperature changes, and anomalies, were detected using the integrated monitoring system. The laboratory test results indicate that the integrated monitoring system is expected to be useful for characterizing the failure of landslide models. The preliminary results of this study suggest that a change in the relative TIR signal (ΔTIR) can be a useful index for landslide detection, and a decrease in the average value of the temperature change ( Δ T I R ¯ ) can be selected as a precursor to landslide failure.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20010219