Liposomes and Their Therapeutic Applications in Enhancing Psoriasis and Breast Cancer Treatments

Psoriasis and breast cancer are two examples of diseases where associated inflammatory pathways within the body's immune system are implicated. Psoriasis is a complex, chronic and incurable inflammatory skin disorder that is primarily recognized by thick, scaly plaques on the skin. The most not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2024-11, Vol.14 (21), p.1760
Hauptverfasser: Elkordy, Amal Ali, Hill, David, Attia, Mohamed, Chaw, Cheng Shu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Psoriasis and breast cancer are two examples of diseases where associated inflammatory pathways within the body's immune system are implicated. Psoriasis is a complex, chronic and incurable inflammatory skin disorder that is primarily recognized by thick, scaly plaques on the skin. The most noticeable pathophysiological effect of psoriasis is the abnormal proliferation of keratinocytes. Breast cancer is currently the most diagnosed cancer and the leading cause of cancer-related death among women globally. While treatments targeting the primary tumor have significantly improved, preventing metastasis with systemic treatments is less effective. Nanocarriers such as liposomes and lipid nanoparticles have emerged as promising drug delivery systems for drug targeting and specificity. Advances in technologies and drug combinations have emerged to develop more efficient lipid nanocarriers to include more than one drug in combinational therapy to enhance treatment outcomes and/or relief symptoms for better patients' quality of life. Although there are FDA-approved liposomes with anti-cancer drugs for breast cancer, there are still unmet clinical needs to reduce the side effects associated with those nanomedicines. Hence, combinational nano-therapy may eliminate some of the issues and challenges. Furthermore, there are no nanomedicines yet clinically available for psoriasis. Hence, this review will focus on liposomes encapsulated single and/or combinational therapy to augment treatment outcomes with an emphasis on the effectiveness of combinational therapy within liposomal-based nanoparticulate drug delivery systems to tackle psoriasis and breast cancer. This review will also include an overview of both diseases, challenges in delivering drug therapy and the roles of nanomedicines as well as psoriasis and breast cancer models used for testing therapeutic interventions to pave the way for effective in vivo testing prior to the clinical trials.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano14211760