TRIM28-mediated nucleocapsid protein SUMOylation enhances SARS-CoV-2 virulence

Viruses, as opportunistic intracellular parasites, hijack the cellular machinery of host cells to support their survival and propagation. Numerous viral proteins are subjected to host-mediated post-translational modifications. Here, we demonstrate that the SARS-CoV-2 nucleocapsid protein (SARS2-NP)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-01, Vol.15 (1), p.244-244, Article 244
Hauptverfasser: Ren, Jiang, Wang, Shuai, Zong, Zhi, Pan, Ting, Liu, Sijia, Mao, Wei, Huang, Huizhe, Yan, Xiaohua, Yang, Bing, He, Xin, Zhou, Fangfang, Zhang, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Viruses, as opportunistic intracellular parasites, hijack the cellular machinery of host cells to support their survival and propagation. Numerous viral proteins are subjected to host-mediated post-translational modifications. Here, we demonstrate that the SARS-CoV-2 nucleocapsid protein (SARS2-NP) is SUMOylated on the lysine 65 residue, which efficiently mediates SARS2-NP’s ability in homo-oligomerization, RNA association, liquid-liquid phase separation (LLPS). Thereby the innate antiviral immune response is suppressed robustly. These roles can be achieved through intermolecular association between SUMO conjugation and a newly identified SUMO-interacting motif in SARS2-NP. Importantly, the widespread SARS2-NP R203K mutation gains a novel site of SUMOylation which further increases SARS2-NP’s LLPS and immunosuppression. Notably, the SUMO E3 ligase TRIM28 is responsible for catalyzing SARS2-NP SUMOylation. An interfering peptide targeting the TRIM28 and SARS2-NP interaction was screened out to block SARS2-NP SUMOylation and LLPS, and consequently inhibit SARS-CoV-2 replication and rescue innate antiviral immunity. Collectively, these data support SARS2-NP SUMOylation is critical for SARS-CoV-2 virulence, and therefore provide a strategy to antagonize SARS-CoV-2. Here, the authors show that TRIM28-mediated SUMOylation of SARS-CoV-2 NP is critical for its liquid-liquid phase separation (LLPS) property and subsequent inhibition of innate antiviral immunity. The peptide NSIP-III is applied to unleash such connection by interfering TRIM28 and NP interaction.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-44502-6