Constacyclic Codes over Finite Chain Rings of Characteristic p
Let R be a finite commutative chain ring of characteristic p with invariants p,r, and k. In this paper, we study λ-constacyclic codes of an arbitrary length N over R, where λ is a unit of R. We first reduce this to investigate constacyclic codes of length ps (N=n1ps,p∤n1) over a certain finite chain...
Gespeichert in:
Veröffentlicht in: | Axioms 2021-12, Vol.10 (4), p.303 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be a finite commutative chain ring of characteristic p with invariants p,r, and k. In this paper, we study λ-constacyclic codes of an arbitrary length N over R, where λ is a unit of R. We first reduce this to investigate constacyclic codes of length ps (N=n1ps,p∤n1) over a certain finite chain ring CR(uk,rb) of characteristic p, which is an extension of R. Then we use discrete Fourier transform (DFT) to construct an isomorphism γ between R[x]/ and a direct sum ⊕b∈IS(rb) of certain local rings, where I is the complete set of representatives of p-cyclotomic cosets modulo n1. By this isomorphism, all codes over R and their dual codes are obtained from the ideals of S(rb). In addition, we determine explicitly the inverse of γ so that the unique polynomial representations of λ-constacyclic codes may be calculated. Finally, for k=2 the exact number of such codes is provided. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms10040303 |