The Caffarelli–Kohn–Nirenberg inequalities for radial functions

We establish the full range of the Caffarelli–Kohn–Nirenberg inequalities for radial functions in the Sobolev and the fractional Sobolev spaces of order $0 < s \le 1$. In particular, we show that the range of the parameters for radial functions is strictly larger than the one without symmetric as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2023-10, Vol.361 (G7), p.1175-1189
Hauptverfasser: Mallick, Arka, Nguyen, Hoai-Minh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish the full range of the Caffarelli–Kohn–Nirenberg inequalities for radial functions in the Sobolev and the fractional Sobolev spaces of order $0 < s \le 1$. In particular, we show that the range of the parameters for radial functions is strictly larger than the one without symmetric assumption. Previous known results reveal only some special ranges of parameters even in the case $s=1$. The known proofs used the Riesz potential and inequalities for fractional integrations. Our proof is new, elementary, and is based on one-dimensional case. Applications on compact embeddings are also mentioned.
ISSN:1778-3569
1778-3569
DOI:10.5802/crmath.503